Precision Agriculture Ecosystem Innovation through IoT Technology

A Study of Learning Factory Development for Farmer Empowerment in Ngajum Village

Authors

  • Dwi Wulandari Economic Development, Universitas Negeri Malang Malang, Indonesia, Indonesia
  • Otto Fajarianto Educational Technology, Universitas Negeri Malang Malang, Indonesia, Indonesia
  • Putra Hilmi Prayitno Economic Development, Universitas Negeri Malang Malang, Indonesia, Indonesia
  • Fuad Indra Kusuma Mechanical Engineering, Universitas Negeri Malang, Malang, Indonesia, Indonesia
  • Ari Gunawan Management, Universitas Negeri Malang, Malang, Indonesia, Indonesia
  • Afis Baghiz Syafruddin Management, Universitas Gadjah Mada, Yogyakarta, Indonesia, Indonesia
  • Andi Basuki Management, Universitas Negeri Malang, Malang, Indonesia, Indonesia

DOI:

https://doi.org/10.54543/syntaximperatif.v6i5.805

Keywords:

Precision Agriculture, Smart Greenhouse, Learning Factory

Abstract

Precision agriculture is an innovative approach that integrates digital technology to improve the efficiency and productivity of the agricultural sector. This study aims to develop a precision agriculture ecosystem through the implementation of a Smart Agriculture Greenhouse based on the Internet of Things (IoT) as a learning factory model for fostering farmer independence in Ngajum Village. The methods used include a qualitative-descriptive approach with field studies, observations, and in-depth interviews with farmers, assistants, and local stakeholders. The results of the development show that the use of IoT technology in smart greenhouses allows real-time monitoring and control of the agricultural environment, thereby increasing the accuracy of decision-making in cultivation. In addition, the learning factory concept can be a contextual learning medium for farmers to master modern agricultural skills practically. This program also encourages the transformation of farmers' mindsets from conventional practices to data-based and technology-based practices. The ecosystem that is formed acts as a center for education, production, and sustainable agricultural innovation at the village level. These findings show that collaboration between technology, education, and community empowerment can create an adaptive and replicable smart agriculture model to support local food independence. The development of an ecosystem like this has the potential to be a reference in agricultural transformation in other rural areas

References

Ahmed, N., & Shakoor, N. (2025). Advancing agriculture through IoT, Big Data, and AI: a review of smart technologies enabling sustainability. Smart Agricultural Technology, 100848.

Akhter, R., & Sofi, S. A. (2022). Precision agriculture using IoT data analytics and machine learning. Journal of King Saud University-Computer and Information Sciences, 34(8), 5602–5618.

Al-Qudah, R., Almuhajri, M., & Suen, C. Y. (2025). Unveiling the potential of sustainable agriculture: A comprehensive survey on the advancement of AI and sensory data for smart greenhouses. Computers and Electronics in Agriculture, 229, 109721.

AlZubi, A. A., & Galyna, K. (2023). Artificial intelligence and internet of things for sustainable farming and smart agriculture. IEEE Access, 11, 78686–78692.

Bampasidou, M., Goldgaber, D., Gentimis, T., & Mandalika, A. (2024). Overcoming ‘Digital Divides’: Leveraging higher education to develop next generation digital agriculture professionals. Computers and Electronics in Agriculture, 224, 109181.

Chaichana, T., Reeve, G., Drury, B., Chakrabandhu, Y., Wangtueai, S., Yoowattana, S., Sookpotharom, S., Boonnam, N., Brennan, C. S., & Muangprathub, J. (2024). Bespoke cultivation of seablite with digital agriculture and machine learning. Ecological Indicators, 166, 112559.

Chernbumroong, S., Sureephong, P., Suebsombut, P., & Sekhari, A. (2022). Training evaluation in a smart farm using Kirkpatrick model: A case study of Chiang Mai. 2022 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON), 463–466.

De, S., Dey, S., Bhatia, S., & Bhattacharyya, S. (2022). An introduction to data mining in social networks. In Advanced data mining tools and methods for social computing (pp. 1–25). Elsevier.

Densu, K. (2018). Omenala: Toward an African-centered ecophilosophy and political ecology. Journal of Black Studies, 49(1), 29–52.

Jahirul, M. I., Rasul, M. G., Schaller, D., Khan, M. M. K., Hasan, M. M., & Hazrat, M. A. (2022). Transport fuel from waste plastics pyrolysis–A review on technologies, challenges and opportunities. Energy Conversion and Management, 258, 115451.

Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks, 3, 150–164.

Kassa, M. M., Azene, M. K., Mengstie, S. M., & Ferede, M. W. (2024). Effect of using multimedia and dynamic classroom integrated instruction on grade 11 students’ biology academic achievement. Heliyon, 10(18).

Kouadria, A., Mostefaoui, K., & Al-Shamri, M. Y. H. (2025). Efficient smart greenhouse modeling for optimal energy consumption and climate conditions Setting. Computers and Electronics in Agriculture, 229, 109674.

Marenya, P. P., & Usman, M. A. (2021). Community-embedded experiential learning and adoption of conservation farming practices in Eastern and Southern Africa. Environmental Development, 40, 100672.

Morchid, A., Et-taibi, B., Oughannou, Z., El Alami, R., Qjidaa, H., Jamil, M. O., Boufounas, E.-M., & Abid, M. R. (2025). IoT-enabled smart agriculture for improving water management: A smart irrigation control using embedded systems and Server-Sent Events. Scientific African, 27, e02527.

Muthukumar, M., & Karthick, A. (2025). Recent Progress in the Implementation of Sustainable Farming. Measurement: Sensors, 101877.

Thiagarajah, S. P., Lo, Y.-C., Kung, F. W. L., Alias, M. Y., Mahmud, A., Shaik, M. A., Yang, T. T., & Zing, L. (2024). Chaichana, T., Wangtueai, S., Reeve, G., Yoowattana, S., Drury, B., Chakrabandhu, Y., Sookpotharom, S., Brennan, C. S., & Muangprathub, J. (2024). Bespoke cultivation of seablite with digital agriculture and machine learning. Ecological Indicators, 166, 1. IEEE Potentials.

Zarafshani, K., Solaymani, A., D’Itri, M., Helms, M. M., & Sanjabi, S. (2020). Evaluating technology acceptance in agricultural education in Iran: A study of vocational agriculture teachers. Social Sciences & Humanities Open, 2(1), 100041.

Downloads

Published

2025-12-24

How to Cite

Wulandari, D., Fajarianto, O., Hilmi Prayitno, P., Kusuma, F. I., Gunawan, A., Syafruddin, A. B., & Basuki, A. (2025). Precision Agriculture Ecosystem Innovation through IoT Technology: A Study of Learning Factory Development for Farmer Empowerment in Ngajum Village. JURNAL SYNTAX IMPERATIF : Jurnal Ilmu Sosial Dan Pendidikan, 6(5), 1299–1323. https://doi.org/10.54543/syntaximperatif.v6i5.805

Citation Check

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.